Generating Simulated Relevance Feedback: A Prognostic Search approach
نویسندگان
چکیده
Implicit relevance feedback has proved to be a important resource in improving search accuracy and personalization. However, researchers who rely on feedback data for testing their algorithms or other personalization related problems are loomed with problems like unavailability of data, staling up of data and so on. Given these problems, we are motivated towards creating a synthetic user relevance feedback data, based on insights from query log analysis. We call this simulated feedback. We believe that simulated feedback can be immensely beneficial to web search engine and personalization research communities by greatly reducing efforts involved in collecting user feedback. The benefits from ”Simulated feedback” are it is easy to obtain and also the process of obtaining the feedback data is repeatable, customizable and does not need the interactions of the user. In this paper, we describe a simple yet effective approach for creating simulated feedback. We have evaluated our system using the clickthrough data of the users and achieved 77% accuracy in generating click-through data.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملA new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems
Relevance feedback techniques have demonstrated to be a powerful means to improve the results obtained when a user submits a query to an information retrieval system as the world wide web search engines. These kinds of techniques modify the user original query taking into account the relevance judgements provided by him on the retrieved documents, making it more similar to those he judged as re...
متن کاملRhetorical based Music-Inspired Optimization Algorithm: Harmony-TABU for Document Retrieval using Relevance Feedback Approach
Harmony search (HS) is a meta-heuristic algorithm mimicking the improvisation process of musicians. This paper arranges the basic structure of the HS algorithm and customizes the algorithm for clustering optimization problems. We propose novel clustering algorithm based on Harmony Search (HS) optimization method that deals with document clustering. By modeling Retrieval as an optimization probl...
متن کاملThe Role of the FUM Students' Demographic Features in the Relevance Judgment Scores of Their Information Retrieval Results in Search Engines
In order to design user-friendly information retrieval systems, it is important to pay attention to characteristics of users. Therefore, the aim of the present study is to investigate the role of demographic variables of users during their search in search engines. Method: This is an applied study in terms of purpose, which was done by the evaluation method. To conduct the research, firstly,...
متن کامل